![]() |
![]() |
![]() |
Log gamma function
#include <math.h> double lgamma( double x ); double lgamma_r( double x, int* signgamp); float lgammaf( float x ); float lgammaf_r( float x, int* signgamp);
libm
The lgamma() and lgamma_r() functions return the natural log (ln) of the gamma() function and is equivalent to gamma(). These functions return ln|Gamma(x)|, where Gamma(x) is defined as follows:
(The results converge when x is between 0 and 1.)
The gamma math function has the property G(N) = G(N-1)*N (it grows fast, so that's why log is used).
lgamma(x) = ln (lgamma(x)) = gamma(x)
The lgamma() and lgammaf() functions use the external integer signgam to return the sign of Gamma(x) while lgamma_r() and lgammaf_r() use the user-allocated space addressed by signgamp.
![]() |
The signgam variable isn't set until lgamma() or
lgammaf() returns.
For example, don't use the expression:
g = signgam * exp( lgamma( x )); to compute g = Gamma(x)'. Instead, compute lgamma() first: lg = lgamma(x); g = signgam * exp( lg ); |
Note that Gamma(x) must overflow when x is large enough, underflow when -x is large enough, and generate a division by 0 exception at the singularities x a nonpositive integer.
The gamma math function.
#include <stdio.h> #include <errno.h> #include <inttypes.h> #include <math.h> #include <fpstatus.h> int main(int argc, char** argv) { double a, b; errno = EOK; a = 0.5; b = lgamma(a); printf("lgamma(%f) = %f %d \n", a, b, errno); return(0); }
produces the output:
lgamma(0.500000) = 0.572365 0
lgamma() is standard Unix; lgamma_r(), lgammaf(), and lgammaf_r() are ANSI (draft)
Safety: | |
---|---|
Cancellation point | No |
Interrupt handler | No |
Signal handler | No |
Thread | Yes |
![]() |
![]() |
![]() |